Description: Historical development of image processing. Image data structures. Image Preprocessing. Image enhance ment. Image classification. Image postprocessing. Image compression and restoration. Figure modeling. Computer animation. Contour mesh conversion. Applications of image processing. Introduction to computer vision.
Course staff and contact information:
Problem sets: You need to do problem sets to reinforce what you learn in lecture. Copying other people's work is strictly prohibited.
Grading: Your grade in this course will be based principly on attendance, problem sets and exams as follows.
Attendance 10%
Problem sets 30%
Midterm exam 30%
Final exam 30%Software: You will need MATLAB to implement some examples in class and to do your homework. If you are not familiar with MATLAB, please refer to the MATLAB and Image Processing primer provided at www.fundipbook.com
Image Viewer: free software www.xnview.com
Textbooks & Materials:
- Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 4th ed, Pearson Prentice Hall, 2018.
- Chris Solomon and Toby Breckon, Fundamentals of Digital Image Processing: a Practical Approach with Examples in MATLAB, John Wiley & Sons, 2011 (optional).
Topic | Reading | Lecture Notes | Problem Set | Solution | |
Syllabus | |||||
I | Introduction | G&W ch. 1 | slides | ||
II | Digital Image Fundamentals | G&W ch. 2 | slides | ||
III | MATLAB Tutorial | slides | HW1 | Sol1 | |
IV | Spatial Enhancement | G&W ch. 3 | slides1 slides2 |
HW2 HW3 |
Sol2 Sol3 |
V | Frequency-domain Processing | G&W ch. 4 | slides | HW4 | Sol4 |
VI | Image Restoration | G&W ch. 5.1-5.9 | slides | ||
VII | Color Image Processing | G&W ch. 6 | slides | ||
VIII | Morphological Processing | G&W ch. 9.1-9.5 | slides | HW5 | Sol5 |
IX | Image Segmentation | G&W ch. 10.1-10.4 | slides1 slides2 |
HW6 | Sol6 |
X | Object Recognition | G&W ch. 12 | slides |
||
XI | Geometry | Solomon&Breckon ch. 7 | slides |